crystals (item 51) that gave two long spacings, one for the A form (10 orders) and the other for the B form (4 orders), but the short-spacing pattern differed from the A pattern only by an additional strong spacing at 3.74 Å. Therefore, a strong short spacing at 3.74 Å can be taken as characteristic of the B form.

A review of the long-spacing data based on the X-ray powder-diffraction data of Kurokawa (11), five values, and those calculated ($c \sin \beta$) from the single-crystal data of Turner and Lingafelter (12), six values, and of Sakurai (9), three values, indicates that the A modification has been the only form observed for even-carbon amides up to myristamide. When plotted against n, these data were satisfied by eq 3 with an average deviation

$$L = 1.755n + 3.263 \tag{3}$$

of 0.16 Å. The calculated angle of tilt is therefore sin⁻¹ $1.755/2.54 = 43^{\circ} 42'$.

Because only limited X-ray data were published on four long-chain methyl ketones reported in a previous publication (13), these four compounds (2-tridecanone, 2-pentadecanone, 2heptadecanone, and 2-nonadecanone) are listed in Table I with complete X-ray data. When the long spacings of these compounds are plotted vs. number of carbons, the three longer compounds fall squarely on a straight line (the C13 compound is slightly off the line) represented by eq 4. The calculated angle

$$L = 2.40n + 6.60 \tag{4}$$

of tilt of these long-chain methyl ketones is therefore sin⁻¹ $2.40/2.54 = 70^{\circ} 53'$.

Item 21 in Table I, prepared by melting an equimolar mixture of morpholine stearate and cyclohexylamine paimitate and allowing it to crystallize from the melt, gave a long spacing characteristic of cyclohexylamine stearate (item 16) and none for the other combination possible from the four ions present. Mod et al. (14) have studied the ternary reciprocal salt pair system involving the cyclohexylamine and morpholine salts of stearic and palmitic acids and prepared a freezing-point diagram for this system. A study of this diagram indicates that the first crystals to form from the melt of a 50:50 mixture would be cyclohexylamine stearate. The first crystals would tend to grow and be larger and better formed than those coming out later when components of eutectic mixtures were crystallizing. It is therefore not surprising that the long spacing for only cyclohexylamine stearate was observed in the X-ray data for the mixture.

Acknowledgment

We thank Gene Sumrell for assistance with the manuscript.

Literature Cited

- (1) Mod, R. R.; Magne, F. C.; Skau, E. L. J. Am. Oll Chem. Soc. 1959, 36, 616.
- Mod, R. R.; Magne, F. C.; Skau, E. L. J. Chem. Eng. Data 1960, 5, 478.
 Mod, R. R.; Magne, F. C.; Skau, E. L. J. Chem. Eng. Data 1962, 7, 31.
 Mod, R. R.; Harris, J. A.; Skau, E. L. J. Chem. Eng. Data 1968, 13, 115.
 Mod, R. R.; Magne, F. C.; Skau, E. L. J. Phys. Chem. 1956, 60, 1651.
 Mod, R. R.; Magne, F. C.; Skau, E. L. J. Am. Oll Chem. Soc. 1959, 36, 100.

- 102.
- (7) O'Connor, R. T.; Mod, R. R.; Murray, M. D.; Skau, E. L. J. Am. Chem. Soc. 1955, 77, 892.

- Soc. 1955, 77, 892.
 (8) Skau, E. L. J. Am. Oll Chem. Soc. 1973, 50, 245.
 (9) Sakural, T. J. Phys. Soc. Jpn. 1955, 10, 1040.
 (10) Sakural, T.; Yabe, M. J. Phys. Soc. Jpn. 1958, 13, 5.
 (11) Kurokawa, S. Bull. Chem. Soc. Jpn. 1955, 28, 660.
 (12) Turner, J. D.; Lingafetter, E. C. Acta Crystallogr. 1955, 8, 549.
 (13) Bailey, A. V.; Mitcham, D.; Skau, E. L. J. Chem. Eng. Data 1970, 15, 542 542.
- (14) Mod, R. R.; Magne, F. C.; Skau, E. L. J. Am. Oll Chem. Soc. 1958, 35, 688.

Received for review March 21, 1980. Accepted June 17, 1980.

Densities of NaCl, MgCl₂, Na₂SO₄, and MgSO₄ Aqueous Solutions at 1 atm from 0 to 50 °C and from 0.001 to 1.5 m

Chen-Tung A. Chen and Joanne Hwa Chen

School of Oceanography, Oregon State University, Corvallis, Oregon 97331

Frank J. Millero*

Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149

The relative densities $(d - d_0)$ of NaCl, MgCl₂, Na₂SO₄, and MgSO₄ aqueous solutions have been determined at 1 atm with a vibrating flow densimeter from 0.001 to 1.5 m and from 0 to 35 °C. The data have been combined with our earlier measurements at temperatures up to 55 °C and fitted to equations of the following form (precisions better than 15×10^{-6} g cm⁻³): $d - d_0 = Am + Bm^{3/2} + Bm^{3/2}$ $Cm^2 + Dm^{5/2}$, where d and d₀ are the densities of solution and pure water, respectively, *m* is the molality, and A, B, C, and D are temperature-dependent parameters. The equations agree well with the results of other workers.

Introduction

The basic pressure-volume-temperature-concentration properties of NaCl, MgCl₂, Na₂SO₄, and MgSO₄ aqueous solutions are of prime importance for various thermodynamic calculations in solution chemistry, geochemistry, and oceanography. They are also important in the engineering calculations such as those concerning the process of converting salty water to potable water and the process of assessing salty water intrusion in the freshwater aquifers. A survey of the literature (14) reveals the scarcity of reliable experimental 1-atm density data for these solutions at temperatures other than 25 °C. The present paper provides precise 1-atm density data from 0 to 55 °C and from 0 to 1.5 m for the major sea salts. The results have been fitted to equations that are simple polynomial functions of t (°C) and m^{1/2} (molality).

Experimental Section

Densities of NaCl, MgCl₂, Na₂SO₄, and MgSO₄ aqueous solutions have been measured at various temperatures and concentrations on a high-precision digital readout flow densimeter

Table I.	Relative Density of	of NaCl, MgCl ₂ ,	Na ₂ SO ₄ , and	MgSO ₄ A	queous Solutions

m	1000 <i>∆d</i>	m	1000 <i>∆d</i>	m	1000 <i>∆d</i>	m	1000 <i>∆d</i>	m	1000 <i>∆d</i>	m	1000 <i>∆d</i>
NaCl,	0°C	NaCl	,35°C	MgCl,	,25°C	0.16373	21.547	0.70189	83.141	MgSO,	.25°C
0.01029	0.470	0.04120	1.670	0.00469	0.372	0.19951	26.097	0.72018	85.166	0.00099	0.128
0.04120	1.864	0.09485	3.817	0.00978	0.785	0.30182	38.931	0		0.00549	0.688
0.16630	7.429	0.16630	6.673	0.00989	0.797	0.50208	63.252	Na ₂ SO,	, 35 °C	0.01177	1.458
0.50190	21.845	0.50190	19.740	0.00989	0.802	0.56760	71.015	0.00340	0.443	0.02231	2.742
0.99920	42.290	0.99920	38.413	0.01972	1.576	0.70189	86.634	0.01055	1.339	0.02786	3.426
	c °c		^°~	0.04851	3.854			0.05050	6.331	0.03855	4.726
NaCi,	5.0	MgCl	2,0°C	0.05038	3.994	Na ₂ SO ₄	,15°C	0.05553	6.961	0.03855	4.727
0.01029	0.455	0.00469	0.391	0.05038	3.999	0.00340	0.458	0.10019	12.461	0.07019	8.526
0.04120	1.819	0.00469	0.397	0.07890	6.212	0.01055	1.388	0.16373	20.184	0.07019	8.528
0.09485	4.154	0.00978	0.822	0.09970	7.845	0.01399	1.850	0.30182	36.603	0.11669	14.048
0.16630	1.257	0.01972	1.645	0.09970	7.850	0.01399	1.859	0.33307	40.251	0.12010	14.459
0.19849	8.031	0.04137	3.423	0.19500	15.185	0.03178	4.171	0.40356	48.438	0.12010	14.463
0.50120	21.347	0.04851	4.018	0.19525	15.172	0.05050	6.583	0.50208	59.687	0.21211	25.246
0.30190	21.360	0.07890	0.4/8	0.19893	15.476	0.05553	7.234	0.56760	67.098	0.21211	25.253
0.72467	30.469	0.09627	15 911	0.19893	15.475	0.10019	12.941	MgSO	0 °C	0.23758	28.188
0.99920	41.420	0.19500	15.011	0.28278	21.818	0.16373	20.922	0.00099	0.129	0.39375	46.132
1.00120	41.512	0.19323	13.830	0.37485	28.701	0.19951	25.38/	0.00549	0.730	0.39375	46.138
1.49980	60./19	0.20270	22.731	0.49487	37.572	0.30182	37.908	0.01177	1.538	0.64325	74.089
NaCl,	15°C	0.37463	23.073	0.49487	37.575	0.33307	41.680	0.02786	3.584	0.88167	100.043
0.01029	0.437	0.40011	32.434	0.55193	41.719	0.40356	50.095	0.03855	4.944	0.88167	100.049
0.04120	1.751	0.55195	43.342	0.63404	47.644	0.50208	61.705	0.07019	8.908	1.23320	137.220
0.09485	4.004	0.03404	49.489	0.71531	53.503	0.56760	69.311	0.11669	14.678	1.23320	137.223
0.16630	6.986	0.79756	01.331	0.79758	59.328	0.70189	84.640		- 0 -	1.35795	150.078
0.19849	8.312	0.9/410	14.252	0.99097	72.852	Na.SO	25 °C	MgSO	,,5°C	1.35795	150.082
0.50120	20.610	MgCl ₂	.5°C	0.99097	72.850	0.00259	0.335	0.00099	0.131	1.42400	156.831
0.50190	20.634	0.00469	0.384	1.47531	105.418	0.00340	0.436	0.00549	0.717	1.42400	156.843
0.72467	29.457	0.00978	0.816	1.47531	105.422	0.00504	0.651	0.01177	1.515	1.48251	162.740
0.99920	40.087	0.01972	1.615			0.01055	1.361	0.02231	2.851	1.48251	162.748
1.00120	40.168	0.04137	3.381	MgCl ₂	, 35 °C	0.01270	1.591	0.02786	3.551	14.60	ac ° a
1.49986	58.848	0.04851	3.967	0.00469	0.362	0.01682	2.162	0.03855	4.883	MgSU ₄	, 35 C
N- 0	25°0	0.07890	6.388	0.04851	3.805	0.03022	3.867	0.07019	8.797	0.00099	0.115
NaCI,	25 0	0.09627	7.805	0.09627	7.547	0.03581	4.575	0.11669	14.503	0.00549	0.675
0.00992	0.414	0.19500	15.624	0.28278	21.689	0.04293	5.477	0.12010	14.905	0.01177	1.444
0.01011	0.420	0.19525	15.624	0.37485	28.558	0.05050	6.437	0.21211	26.013	0.02231	2./18
0.01029	0.426	0.28278	22.428	0.40811	30.988	0.05553	7.075	0.23758	29.092	0.02/86	3.399
0.04120	1.696	0.37485	29.484	0.55193	41.473	0.05958	7.569	1.48251	166.290	0.03855	4.704
0.05002	2.068	0.40811	32.016	Na.Se	0.0°C	0.07698	9.753	MaSO	15 °C	0.07019	8.432
0.05003	2.066	0.55193	42.831	0.00340	0 4 8 1	0.08861	11.205	0 00099	0133	0.11009	13.960
0.09485	3.894	0.63404	48.895	0.01055	1 464	0.09850	12.443	0.00549	0.698	0.12010	14.321
0.09989	4.101			0.01399	1.954	0.10019	12.652	0.01177	1.488	0.23/38	21.991
0.10039	4.129	MgCl ₂	, 15 °C	0.03178	4.381	0.11256	14.185	0.02231	2.792	0.393/3	43.//0
0.19849	8.096	0.00469	0.377	0.05050	6.918	0.13651	17.137	0.02786	3 4 8 6	0.04323	/3.348
0.20009	8.162	0.00978	0.790	0.05553	7.610	0.16801	20.993	0.03855	4 793	0.88167	99.331
0.29972	12.145	0.01972	1.593	0.10019	13.584	0.19951	24.841	0.07019	8 6 2 9	1.23320	130.281
0.40009	16.116	0.04137	3.319	0.16373	21.944	0.24072	29.799	0 11669	14 242	1.35/95	149.108
0.49946	20.012	0.04851	3.886	0.19951	26.583	0.30182	37.131	0.12010	14.641	1.42400	155.655
0.50120	20.097	0.07890	6.275	0.50208	64.261	0.33307	40.842	0.21211	25.561	1.40231	101.002
0.50190	20.113	0.09627	7.665	0.56760	72.106	0.35894	43.890	0.23758	28.575		
0.399/1	23.90/	0.19323	13.334	0.70189	87.887	0.40356	49.122	0.39375	46.690		
0.0991/	21./40	0.3/483	28.994		-	0.50061	60.360	0.64325	74.884		
0.72467	20./40	0.40811	31.404	Na ₂ SC	0₄,5°C	0.50208	60.537	0.88167	101.076		
0./995/	31.378	0.33193	42.109	0.00340	0.468	0.56760	68.027	1.23320	138.504		
0.90123	20196	0.03404	40.103	0.01055	1.438						
1 0001 0	20 156	0.9/410	12.309	0.01 399	1.905						
1.00010	20 21 5			0.03178	4.302						
1 40004	57.213			0.05050	6.780						
1.43300	51.520			0.05553	7.446						

(10, 13). The data have been combined with the results of our earlier measurements (15-17) to give reliable equations of state for the four major sea salts at 1 atm over the total range 0-55 °C and 0-1.5 *m*.

All of the solutions have been made by weight with reagent-grade (Baker Analyzed) chemicals (without further purification) and ion-exchanged water (Millipore Super Q System). The concentrations of NaCl and Na₂SO₄ stock solutions have been analyzed by heating to dryness, whereas the concentration of the MgCl₂ stock solution has been analyzed for Cl⁻ by titration with AgNO₃; the concentration of the MgSO₄ stock solution has been analyzed for SO₄²⁻ by titration with BaCl₂.

The vibrating flow densimeter used to make the density measurements is described in detail elsewhere (1, 10, 13). The instrument applies the principle of the vibrating tube. By

measuring the resonance frequency of a hollow metallic tube filled with the solution, one can readily determine the density of the solution. In this study, only relative densities (Δd) are desired

$$\Delta d = d - d_0 = k(\tau^2 - \tau_0^2) \tag{1}$$

where d and d_0 are respectively the densities of the unknown and reference fluids, k is a constant (at a given T and P), and τ and τ_0 are the periods of the natural frequency of the oscillator containing the unknown and reference fluids, respectively. The instrument constant, k, is determined by measuring the τ in pure water (ion-exchanged, Millipore Super Q System) and N₂. The densities of pure water are taken from Kell (9), and the densities of nitrogen are obtained from the van der Waals equation (8). The temperature of the densimeter has been controlled to ± 0.001 °C. The temperature has been set to ± 0.002 °C with

Table II. Coefficients for Eq 2^a

	-			
variables	NaCl	MgCl ₂	Na ₂ SO ₄	MgSO ₄
m	45.872	84.223	140.89	131.174
mt	-0.243	-0 .29 0	-0.608	-0.3261
mt ²	4.05E-3	8.36E-3	7.88E-3	1.88E-3
mt ³	-4.39E-5	-1.48E-4	-3.67E-5	8.43E-5
mt ⁴	2.91E-7	1.34E-6	6.70E-8	-1.12E-6
$m^{3/2}$	-2.766	-6.215	-15.710	-17.615
$m^{3/2}t$	0.0534	0.0816	0.272	0.1629
$m^{3/2}t^2$	-6.02E-4	-1.38E-3	-3.11E-3	-1.96E-3
m^2	-0.793	-1.909	-3.598	5.395
$m^2 t$			•	-1.35E-2
m ^{5/2}				-2.665
validity range	0-1.5 m, 0-55 °C	0–1 <i>m</i> , 0–50 °C	0–1 <i>m,</i> 0–50 °C	01.5 <i>m</i> , 050 °C
std dev $(10^{-6} \circ cm^{-3})$	11.6	10.0	8.9	15.2

 $(10^{-6} \text{ g cm}^{-3})$

^a The terms E-a, given for each variable, mean the coefficient is times 10^{-a} .

a platinum resistance thermometer and a G-2 Mueller bridge (IPTS 1968 temperature scale).

Results

The relative densities of NaCl, MgCl₂, Na₂SO₄, and MgSO₄ aqueous solutions have been measured over the range 0.001-1.5 m and 0-35 °C. The results are tabulated in Table I. The values given in Table I are combined with the magnetic float data obtained earlier in this laboratory (15-17) and fitted into equations of the form (g cm⁻³)

$$10^{3}\Delta d = 10^{3}(d - d_{0}) = Am + Bm^{3/2} + Cm^{2} + Dm^{5/2}$$
 (2)

where A, B, C, and D, the temperature dependent parameters, are given in Table II along with the standard deviations of the fit and m is the molality.

In order to calculate the density of the solutions, one needs the densities of pure water. We have thus refitted the pure water density equation given by Kell (9) to a polynomial equation which is precise to 0.044×10^{-6} g cm⁻³ (one standard deviation) over the range 0–55 °C (3)

 $d_0 (g \text{ cm}^{-3}) = 0.9998395 + 6.7914 \times 10^{-5}t - 9.0894 \times 10^{-6}t^2 + 1.0171 \times 10^{-7}t^3 - 1.2846 \times 10^{-9}t^4 + 1.1592 \times 10^{-11}t^5 - 5.0125 \times 10^{-14}t^6 (3)$

Discussion and Conclusion

The relative densities of NaCl aqueous solutions $(d - d_0)$ calculated from eq 2 at various concentrations and temperatures are compared with the data of Dunn (5, 6), Lee (11), and Desnoyers and co-workers (7, 12) in Figure 1 over the temperature range 0.05-45 °C and the concentration range 0-0.85 m. The data of Dunn are precise to 20×10^{-6} g cm⁻³ (duplicate measurements) and ours to 12×10^{-6} g cm⁻³ (one standard deviation of the fit). The agreement is within the combined precision of 32×10^{-6} g cm⁻³ over most of the concentration and temperature ranges.

Little, if any, density data with precisions better than 100×10^{-6} g cm⁻³ at 1 *m* are available in the literature for MgCl₂, Na₂SO₄, and MgSO₄ aqueous solutions at temperatures other than 25 °C. Therefore, it is only attempted to compare our density results for MgCl₂, Na₂SO₄, and MgSO₄ solutions with the data of other workers at 25 °C. The data of Lee (*11*) were chosen for comparisons because they cover wide concentration ranges and have good precisions (concentrations up to 3.4, 1.3, 1.3, and 1.0 *m* for NaCl, MgCl₂, Na₂SO₄, and MgSO₄ aqueous solutions, respectively, with standard deviations of 13×10^{-6} , 6×10^{-6} , 12×10^{-6} , and 12×10^{-6} g cm⁻³). It is shown in Figure 2 that our NaCl relative densities agree with the data of

Figure 1. Comparisons of the relative densities $(d - d_0 \ln 10^{-6} \text{ g cm}^{-3})$ of NaCl aqueous solutions with the data of Dunn (5, 6) (solid circles) and Fortier et al. (7) and Perron et al. (12) (open circles) at various temperatures.

Figure 2. Comparisons of the relative densities $(d - d_0 \text{ in } 10^{-6} \text{ g cm}^{-3})$ of NaCl, MgCl₂, Na₂SO₄, and MgSO₄ aqueous solutions with the data of Lee (*11*) at 25 ⁶C.

Lee to within $\pm 20 \times 10^{-6}$ g cm⁻³ from 0 to 1 *m*. Our MgCl₂ density agrees with the data of Lee to within $\pm 15 \times 10^{-6}$ g cm⁻³ up to 0.6 *m* and is 76 × 10⁻⁶ g cm⁻³ lower than the data of Lee

at 1 m. The densities of Na₂SO₄ agree to within $\pm 20 \times 10^{-6}$ g cm⁻³ from 0 to 0.6 m. Our value is higher than the data of Lee by 60 \times 10⁻⁶ g cm⁻³ at 1 m. The measured densities of MgSO₄ agree with the data of Lee to within 25×10^{-6} g cm⁻³.

The 1-atm density equations obtained in this study have been combined with the high-pressure sound speeds (2) to derive high-pressure equations of state for NaCl, MgCl₂, Na₂SO₄, and MgSO₄ aqueous solutions. The results will be presented in a future publication (4).

Acknowledgment

A. Lo Surdo and P. Chetirkin performed the sulfate and chloride analysis.

Literature Cited

- (1) Chen, C. T. Ph.D. Dissertation, University of Miami, Coral Gables, FL, 1977.
- (2) Chen, C. T.; Chen, L. S.; Millero, F. J. J. Acoust. Soc. Am. 1978, 63, 1795

- Chen, C. T.; Millero, F. J. Nature (London) 1977, 266, 707. Chen, C. T.; Millero, F. J., unpublished data, University of Miami, 1978.
- (4)
- (1) Chini, C. 1., Millero, P. J., Unpublished Guas, Chivesky Crimitally, 1978.
 (5) Dunn, L. A. *Trans. Faraday Soc.* 1968, 64, 1898.
 (6) Dunn, L. A. *Trans. Faraday Soc.* 1968, 64, 2951.
 (7) Fortier, J. L.; Leduc, P. A.; Picker, P.; Desnoyers, J. E. J. Solution Chem. 1974, 3, 323.
- Weast, R. C., Ed. "Handbook of Chemistry and Physics"; CRC Press: (8) Cleveland, 1974.
- (9) Kell, G. S. J. Chem. Eng. Data 1975, 20, 97. 10) Kratky, O.; Leopold, H.; Stabinger, H. Z. Angew. Phys. 1969, 27, 273. (10)
- Lee, S. Ph.D. Dissertation, Yale University, New Haven, CT, 1966
- (12) Perron, G.; Fortler, J. L., Desnoyers, J. E. J. Chem. Thermodyn. 1975, ', 1177
- (13)Picker, P.; Tremblay, E.; Jolicoeur, C. J. Solution Chem. 1974, 3, 377.
- (14) Millero, F. J. "Water and Aqueous Solution, Structure, Thermodynamics and Transport Processes"; Wiley: New York, 1972; Chapter 13.
- (15) Millero, F. J. J. Phys. Chem. 1970, 74, 356. Millero, F. J.; Knox, J. J. Chem. Eng. Data 1973, 18, 407. (16)
- (17) Millero, F. J.; Knox, J., unpublished data, University of Miami, 1973.

Received for review February 29, 1980. Accepted July 21, 1980. We acknowledge the support of the Office of Naval Research (N00014-75-C-0173) and the oceanographic section of the National Science Foundation (OCE-73-00351-A01) for this study. Chen-Tung A. Chen acknowledges the support of the School of Oceanography, Oregon State University, where some of the data analysis was made.

Thermodynamic Properties of Magnesium Potassium Orthophosphate Hexahydrate

Basil B. Luff* and Robert B. Reed

Division of Chemical Development, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama 35660

The low-temperature heat capacity of magnesium potassium orthophosphate hexahydrate, MgKPO1.6H2O, was measured by adiabatic calorimetry over the temperature range 10-316 K. The standard enthalpy of formation at 298.15 K was determined with a solution calorimeter. Related thermodynamic properties and the solublity product constant were derived.

Introduction

Magnesium potassium orthophosphate hexahydrate. MgKP-O₄·6H₂O, may occur as a soil-fertilizer reaction product (3) or as a precipitate in liquid fertilizers containing potassium and prepared from wet-process phosphoric acid (1). It also is an excellent source of potassium and phosphorus for plants (8). Presented here are measurements of the heat capacity of magnesium potassium orthophosphate hexahydrate from 10 to 316 K, entropies and enthalpies at 298.15 K derived therefrom, and the enthalpy of formation at 298.15 K. The entropy and enthalpy of formation are combined with other values from the literature in the calculation of the solubility product constant, which is compared with the value derived from the direct measurements of solubilities.

Materials. Magnesium potassium orthophosphate hexahydrate was prepared by the method of Lehr et al. (2). Chemical analyses showed it to contain 17.4% K₂O, 15.2% MgO, and 26.8% P2O5 (stoichiometric: 17.68% K2O, 15.13% MgO, and 26.63% P2O5); microscopic examination showed it to comprise an essentially homogeneous phase of MgKPO₄·6H₂O.

Monopotassium orthophosphate was prepared by recrystallizing the reagent-grade salt from distilled water and drying it by vacuum desiccation over MgClO₄. It contained 34.6% K₂O and 52.1% P2O5 (stoichiometric: 34.61% K2O and 52.15%

P2O5). The magnesium chloride solution was prepared by dissolving the reagent-grade salt in distilled water. It contained 14.6% MgO and 25.2% CI (MgCl₂·10.05H₂O, based on the MgO analysis).

Low-Temperature Heat Capacity. The adiabatic calorimeter and the method of operation have been described previously (10), and the overall accuracy of our technique has been reported (5). The defined calorie was taken as 4.1840 absolute J and the ice point as 273.15 K.

The calorimeter was charged with 35.8460 g or 0.134 518 mol. The weight was corrected for bouyancy in air on the basis of a density of 1.83 g cm⁻³ (2), and the gram formula weight was taken as 266.4774. The air in the calorimeter was replaced with helium by evacuating to a pressure of 100 torr and then relieving to atmospheric pressure with helium. This cycle was repeated twice, and then the pressure was adjusted to give the same mass of helium as was used in the measurements on the empty calorimeter. The final observed weight of the calorimeter was 5 mg greater than the summation of the masses in each step of the preparation, evacuation, and sealing of the calorimeter. This difference (+0.01% based on the sample weight) was considered sufficiently small to assure that no appreciable alteration of the sample occurred during evacuation and sealing of the calorimeter. The heat capacity of the sample ranged from 28% of the total at 10 K to 49% at 300 K.

The measured heat capacities were corrected for curvature and for small differences in the amount of eutectic solder relative to the empty calorimeter. Because small temperature differences were important, temperatures were measured to four decimal places; but these were rounded to two decimal places in the final tabulation. The heat capacities below 10 K were read from a large-scale plot of C_P/T against T^2 that extrapolated smoothly to 0 K. Observed molal heat capacities are shown in Table I. Heat capacity and derived functions at round values